Nadya Febriana XI IPS 2
BARISAN DAN DERET ARITMATIKA
Misalkan , maka suku ke-4 dari baris tersebut adalah .
Penjumlahan suku-suku dari suatu barisan disebut deret. Penjumlahan suku-suku tersebut bisa dibuat dalam bentuk sigma. Barisan dari suku U1, U2, U3, …, Un yang dinyatakan dalam fungsi f(n) = Un memiliki deret sebagai:
Baris Aritmatika
Baris aritmatika merupakan baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui penjumlahan atau pengurangan dengan suatu bilangan b. Selisih antara nilai suku-suku yang berdekatan selalu sama yaitu b. Sehingga:
Sebagai contoh baris 1, 3, 5, 7, 9, merupakan baris aritmatika dengan nilai:
b = (9 – 7) = (7 – 5) = (5 – 3) = (3 – 1) = 2
Untuk mengetahui nilai suku ke-n dari suatu barisan aritmatika dapat diketahui dengan mengetahui nilai suku ke-k dan selisih antar suku yang berdekatan (b). rumusannya berikut ini:
Jika yang diketahui adalah nilai suku pertama dan selisih antar sukunya (b), maka nilai k = 1 dan nilai adalah:
Deret Aritmatika
Deret aritmatika adalah penjumlahan suku-suku dari suatu barisan aritmatika. Penjumlahan dari suku-suku petama sampai suku ke-n barisan aritmatika dapat dihitung sebagai:
atau sebagai:
Jika hanya diketahui nilai a dalalah suku pertama dan nilai adalah suku ke-n, maka nilai deret aritmatikanya adalah:
Persamaan tersebut bisa dibalik untuk mencari nilai suku ke-n menjadi:
.
.
Sehingga diperoleh .
Sisipan
Jika hendak membuat sebuah baris aritmatika dengan telah diketahui nilai suku pertama (a) dan suku terakhirnya (p), dapat disisipkan sejumlah bilangan diantara keduan bilangan tersebut. Sejumlah bilangan (q buah) tersebut menjadi suku-suku baris aritmatika dan memiliki selisih antar suku beredekatan (b). Baris aritmatika tersebut memiliki jumah suku q + 2 dan diurut berupa:
a, (a + b), (a + 2b), (a + 3b), …, (a + q.b), (a + (q+1)b)
Diketahui bahwa suku terakhir:
(a + (q+1)b) = p
Maka, nilai b dapat ditentukan sebagai:
Misalkan a= 1 dan p = 9, jika disisipkan 3 bilangan diantara a dan p, maka baris belangan aritmatikanya adalah:
- Nilai q = 3
- Jumlah suku = q + 2 = 3 + 2 = 5
- Baris aritmatika : 1, 3, 5, 7, 9
Suku Tengah
Jika barisan aritmatika memiliki jumlah suku ganjil, maka memiliki suku tengah. Suku tengah baris aritmatika adalah suku ke- . Jika diselesaikan dalam rumus, maka nilai suku tengah didapatkan:
Contoh Soal!
Contoh soal 1
Tentukan suku ke-20 dari barisan 2, 6, 10, 14, …, …,!
Pembahasan:
Diketahui:
a = 2
b = 6 – 2 = 4
Ditanya: U20 =…?
Pembahasan:
Contoh soal 2
Suku tengah barisan aritmetika adalah 15. Jika banyaknya suku barisan tersebut 11 dan suku ke-4 bernilai -3, tentukan suku terakhirnya!
Pembahasan:
Diketahui:
Ut = 15
n = 11
Ditanya: Un =…?
Pembahasan:
Pertama, Quipperian harus mencari nilai t.
Suku tengah adalah suku ke-6. Artinya, U6 = 15.
Untuk mencari nilai a dan b, gunakan metode eliminasi.
Substitusikan nilai b ke persamaan (1).
Selanjutnya, tentukan suku terakhir barisan tersebut.
Jadi, suku terakhirnya adalah 60.
Contoh soal 3
Berapakah jumlah bilangan kelipatan 3 antara 10 sampai 100?
Pembahasan:
Jumlah bilangan kelipatan 3 antara 10 sampai 100 adalah sebagai berikut.
Keterangan:
a = 12
banyaknya suku = 30
Jadi, jumlah bilangan kelipatan 3 antara 10 sampai 100 adalah 1.665.
Contoh Soal 4:
Rumus jumlah n suku pertama deret bilangan 2 + 4 + 6 + … + adalah …
Pembahasan:
Diketahui: a = 2
b = 2
Ditanya: rumus jumlah n suku pertama barisan aritmatika tersebut = ?
Jawab:
Jadi, rumus jumlah n suku pertama barisan aritmatika tersebut adalah
Contoh Soal 5:
Diketahui deret aritmatika dengan suku ke-3 adalah 24 dan suku ke-6 adalah 36. Jumlah 15 suku pertama deret tersebut adalah …
Pembahasan:
Diketahui
Ditanya:
Jawab:
Sebelum kita mencari nilai dari , kita akan mencari nilai a dan b terlebih dahulu dengan cara eliminasi dan subtitusi dari persamaan dan .
Sebelumnya mari ingat lagi bahwa sehingga dan dapat ditulis menjadi
. . .(i)
. . .(ii)
Eliminasi a menggunakan persamaan i dan ii.
a + 2b = 24
a + 5b = 36 –
-3b = -12
b = 4
Lalu, substitusikan nilai b = 4 ke salah satu persamaan (contoh persamaan i).
a + 2b = 24
a + 2 . 4 = 24
a + 8 = 24
a= 24 – 8
a = 16
Setelah mendapatkan nilai a dan b, baru kita bisa mencari nilai dari
Jadi, jumlah 15 suku pertama deret tersebut adalah 660.
Daftar Pustaka : https://www.studiobelajar.com/barisan-deret-aritmatika-geometri/
https://www.zenius.net/blog/23365/materi-soal-barisan-deret-aritmatika
No comments:
Post a Comment